IMMACULATE CONCEPTION HIGH SCHOOL PHYSICS SYLLABUS SEQUENCE 2023/2024 GRADE 11			
WEEK:	TERM 2 WEEK: DATE TOPICS OBJECTIVES		
1	Jan. 10 – 12	Revision	OBJECTIVES The students will review topics for their mock exams.
2-4	Jan. 15 – 19 Jan. 22 -26 Jan. 29 - 30	MOCK EXAMS	There will be no classes. Complete marking of: - the Investigative Projects - Unmarked Labs - Mock Exam Scripts.
4 (cont'd)	Jan 31 - Feb. 1	Electrical Quantities	 LAB : Falling Bead in a liquid (PD) Resistance, R explain the concept of resistance; apply the relationship R= V/I explain why it is necessary for an ammeter to have a very low resistance; explain why it is necessary for a voltmeter to have a very high resistance; solve problems involving series and parallel resistance; solve problems involving series, parallel and series-parallel circuits; I - V Relationships investigate the relationship between current and potential difference;
5	Feb. 5 - 9	Electronics	LABS: I-V relationships & Series and Parallel Circuits Alternating Current • differentiate between direct and alternating currents;

	Feb. 15 - 16		
6	Feb. 12 - 14 MID- TERM BREAK	Electromagnetism	Review of Mock Exam Paper
			 analyze current-time or voltage-time graphs. deduce the period and frequency of ac. or voltages Rectification describe how a semi-conductor dioxide can be used in half wave rectification; differentiate between direct current from batteries and rectified alternating current by a consideration of the V – t graphs for both cases; Logic Gates recall the symbols for AND, OR, NOT, NAND, NOR logic gates; state the function of each gate with the aid of truth tables; analyze circuits involving the combinations of not more than three logic gates; discuss the impact of electronic and technological advances on society. Electricity in the Home discuss the reasons for using parallel connections of domestic appliances; explain the purpose of a fuse or circuit breaker and the earth wire; select a fuse or circuit breaker of suitable current rating for a given appliance; state the adverse effects of connecting electrical appliances to incorrect or fluctuating voltage supplies.
			• analyze current-time or voltage-time

7	Feb 19 - 23	Electromagnetism	 Current Electricity, Electrical Quantities, Circuits & Components & Logic Gates (Coursework) Electromagnetic Force conduct simple experiments to investigate the magnetic field pattern around current-carrying conductors; apply suitable rules which relate the direction of current flow to the direction of the magnetic field; describe a commercial application of an electromagnet; conduct an experiment which demonstrates the existence of a force on a current-carrying conductor placed in a magnetic field; sketch the resultant magnetic flux pattern when a current carrying wire is placed perpendicular to a uniform magnetic field; apply Fleming's left- hand (motor) rule; identify the factors that affect the force on a current-carrying conductor in a magnetic field;
8	Feb. 26 - March 1	Electromagnetism	 Motors explain the action of a D.C. motor; Lab: Refraction Induced e.m.f. describe simple activities which demonstrate an induced e.m.f.; conduct simple experiments to show the magnitude of the induced e.m.f. predict the direction of induced current given the direction of motion of the conductor and that of the magnetic field; explain the action of the A.C. generator; Transformers explain the principle of operation of a transformer; state the advantages of using a.c. for transferring electrical energy;

			• apply the ideal transformer formula Pout = Pin.
9 + 10	March 4 - 8	Waves	
			$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\lambda_1}{\lambda_2}$
			to solve problems on refraction;
			Superposition
			 explain interference of waves in terms of superposition; predict the effect on a 'double slit' interference pattern of changing the slit spacing or the wavelength of the waves.

			Coursework: Types of Waves; Wave Parameters; Diffraction; Reflection
			Light Waves
			Waves or Particles
			 compare rival theories of light held by scientists; describe a simple Young's slit experiment to show that light is a wave motion; <u>Rays of Light</u>
			 explain why the diffraction of light is not normally observed; recall that light travels in straight lines and give examples
			Reflection and Refraction of Light
			Laws of Reflection
			• state and apply the laws of reflection;
	March		Image in a Plane Mirror
11	18 - 22	Waves	 describe the formation of images in a plane mirror; <u>Refraction</u>
			 give examples of observations that indicate that light can be refracted; describe the refraction of light rays; <u>Laws of Refraction</u>
			 state the laws of refraction and use Snell's Law to solve numerical problems; <u>Critical Angle and Total Internal Reflection</u>
			 explain with the aid of diagrams what is meant by 'critical angle' and 'total internal reflection'; calculate critical angles and relate to total internal reflection; draw diagrams illustrating applications of total internal reflection; <u>Dispersion</u>

		 describe how a prism may be used to produce a spectrum from a source of white light; discuss the significance of Newton's prisms experiments for scientific methodology.
March 25 - 28 12 Easter Break March 28 - April 5	Waves	Lenses <u>Action of Lenses</u> • illustrate the effect of converging and diverging lenses on a beam of parallel rays; • recall the meaning of the terms: (a) principal axis; (b) principal focus; (c) focal length; (d) focal plane; (e) magnification;