

IMMACULATE CONCEPTION HIGH SCHOOL
 MATHEMATICS DEPARTMENT
 GRADES 9 CURRICULUM
 2017-2018

INTRODUCTION

"Each student is capable of learning mathematics and learning it well."
"Success is best achieved when school and families work together."

GOAL

To empower all I.C.H.S. students to keep abreast with the demands of the $21^{\text {st }}$ century with regards to mathematical skills, attitudes and understanding that will enable them to be successful in career choices and their daily lives.

FRAMEWORK

The Mathematics Curriculum has been drafted in keeping with the NSC (STEM) and CXC (CSEC) programmes. It is organized by grade level to run over a period of five (5) years from grade 7 through to grade 11. Please note that the CXC (CSEC) Mathematics Examination which will be administered at the end of grade 11 is NOT examined only on grades 10 and 11 objectives. It is examined on the entire five (5) years of work.

The I.C.H.S. Mathematics Department believes that proficiency in most of mathematics is not an inborn characteristic; it is a consequence of persistence, effort, practice, support, encouragement and effective instruction. The use of the curriculum will allow all stakeholders: teachers, parents and students to effectively and efficiently execute the programme.

TO PARENTS/GUARDIAN

Ways to help your child succeed in mathematics:

- Always talk about mathematics in positive ways.
- Have high expectation for your child.
- Become familiar with what your child is studying in mathematics.
- Highlight forms of mathematics your child may encounter in her daily life.
- Help your child with her homework; if necessary identify a friend or relative who knows mathematics. Find out if that person would be willing to answer an occasional phone call from your daughter.
- Seek assistance if and when your child experiences difficulty in mathematics.
- Encourage your child.

GRADE 9
TERM 1

TOPIC	OBJECTIVES
$\text { 1. } \frac{\text { CONSUMER }}{\text { ARITHMETIC }}$	Students should be able to : A 1. Solve simple problems involving payment by installment (e.g. Hire purchase, mortgages etc) 2. Make comparison between hire purchase and cash price 3. Solve problems involving - salaries \& wages - commission. B 1. use simple interest formula to calculate simple interest, principal, time rate or amount. 2. calculate compound interest depreciation and amount (for not more than 3 periods) 3. calculate returns on different types of investments. 4. solve problems involving simple interest, compound interest and depreciation.
2. Probability	Students should be able to : 1. give reasons for probability theory 2. use diagrams to represent the outcome of ideal experiments. 3. determine experimental and theoretical probability of simple events. 4. state a formula for the probability of a successful event 5. identify absolutely impossible \& absolutely certain event and their probability. 6. give probability of events with or without replacement. determine the probability of independent, mutually exclusive and dependent outcomes.
$\begin{aligned} & \text { 3.STATISTICS II } \\ & \begin{array}{l} \text { (statistics 1 should be } \\ \text { reviewed first) } \end{array} \end{aligned}$	Students should be able to : 1. construct a simple frequency table for a given set of data. 2. determine measures of central tendency from a table. 3. draw a histogram and frequency polygon of data represented in a simple frequency table. 4. construct a group frequency table from a set of data. 5. given class size, determine class interval, limit, midpoint and upper /lower boundaries for a given a set of grouped data. 6. draw histogram and frequency polygon given a group

TOPIC	OBJECTIVES
7ata 7. determine the modal class and median from a set of grouped data	
8. use the mid-point of the class interval to estimate the mean of data presented in group frequency table.	

TERM II

TOPIC	OBJECTIVES
4. VECTORS	Students should be able to : 1. Define a vector. 2. Give the different ways in which a vector may be represented. 3. Add and subtract vectors using component form i. e. vectors written as 2×1 column matrices. Multiply a vector by a scalar number
5. Matrices	Students should be able to : 1. Define a matrix 2. Give the order of a matrix 3. Use row and column to identify an entry/element in a given matrix 4. Identify equal, identity, square and zero matrix 5. Add and subtract matrix 6. Multiply a matrix by a scalar number.
6. Transformation Geometry I i) Translation ii) Reflection iii) Glide Reflection	Students should be able to: 1.i). a) define a translation b) translate a point /figure using coordinates c) state the relationship between figure and image d) identify coordinates of image e) identify translation vector given a figure and its image. ii) a) define reflection b) reflect shape in given lines Eg. x -axis, $\mathrm{x}=2$ etc. c) state the relationship between figure and image b) identify lines of reflection figure and its image iii) a) define a glide reflection b) carry out and locate the image of a point/figure under a glide reflection.

	c) state the relationship between figure and image d) find the glide axis given the figure and its image. 2. identify each transformation given figure and image.
7. Changing Subject of the Formula/ Literal Equations	Students should be able to : 1. Solve algebraic equations involving brackets and fractions. 2. Write a variable in terms of another from a given equation (involving squares and square roots). 3. Solve algebraic equations involving brackets and fractions. 4. Write a variable in terms of another from a given equation (involving squares and square roots).
$\begin{gathered} \text { 8. Calculation of } \\ \text { Distances } \end{gathered}$	Students should be able to : 1. use calculator to calculate square and square roots of numbers. 2 use pythagoras' theorem to calculate the unknown lengths of lines. 3. use the distance formula to calculate the length of a line between two points. 4. use pythagoras' theorem to prove whether or not a triangle is right-angled.
9. Trigonometry I	Students should be able to : 1. Determine the sine cosine and tangent ratios of acute angles in a right-angled triangle. 2. Use sine, cosine and tangent ratios in the solution of Right-angled triangles. 3. Use simple trigonometric ratios to solve problems based on measurements in physical world: - Heights and distances - Angles of elevation and depression - Bearings
10.Coordinate Geometry (Equations of Straight Lines)	Students should be able to: 1. Recognize a linear equation connecting two variables 2. Plot a straight-line graph of a given equation, 3. Calculate the gradient of a straight line from its graph or given two points on the line. 4. Recognize the equation and know the gradient for horizontal and vertical lines. 5. Find the y-intercept for any straight line from its graph 6. Recognize the equation of a straight line in the form $y=m x+c$, and use this to state the gradient and the y-intercept for any straight line

	7. Determine the equation of the line $y=m x+c$ given : i) graph of a line ii) the coordinates of two points iii) the gradient and a points 9. graph inequalities
10. Calculate midpoint of a line	
11. Use distance formula when given two points to	
calculate to find the distance between them	
12. Identify parallel and perpendicular lines and write their	
equations.	

TERM III

TOPIC	OBJECTIVES
11. Simultaneous Equation	Students should be able to: 1. understand and recognize simultaneous equations. 2. Solve simultaneous linear equations graphically and Algebraically (using substitution method and Elimination method.) 3. Use simultaneous linear equations to solve worded Problems when required.
$\text { 12. } \frac{\text { Sets II }}{\text { (review }} \text { SET I first) }$	Students should be able to: 1. Identify shaded regions of a set. 2. Write a set in set builder notation. 3. Solve numerical problems arising from the intersection of not more than three sets.
13. Transformation Geometry II i) Rotation ii) Enlargement	Students should be able to: 1. i) a) define rotation b) rotate a point/ figure about a given centre and in a given direction. c) list the properties of rotation d) find the centre, angle and direction of rotation given the figure and its image ii) a) define an enlargement b) produce an enlargement when given figure, centre of enlargement and scale factor.

	c) list the properties of enlargement. d) find centre of enlargement and scale factor when figure and its image is given
$2 . \quad$ identify each transformation given figure and image.	

