GRADE 12 BIOLOGY TERM PLAN ## 2023-2024 ## **TERM ONE: SEPTEMBER 11 – DECEMBER 15** | | | THEORY | LABS/QUIZ/TESTS | |--------------------|--------|---|--| | SEPTEMBER | | | | | September
11-15 | WEEK 1 | INTRO TO COURSE Course outline ASPECTS OF BIOCHEMISTRY Water Carbohydrates – structure and function of monosaccharides | | | September
18-24 | WEEK 2 | • Carbohydrates – disaccharides and polysaccharides | Course Work
Water Worksheet | | September
25-29 | WEEK 3 | LipidsProteins | | | OCTOBER | | | | | October 2-6 | WEEK 4 | • Proteins cont'd | • Food tests – qualitative & quantitative | | October 9 - 12 | WEEK 5 | Review structure and function of plant and animal cells Describe prokaryotic and eukaryotic cells Endosymbiotic theory Cell organelles – structure and function Tissues and Organs concept using the dicot root | Course Work
Electron Micrograph
Worksheeet | | October 17-
20 | WEEK 6 | MEMBRANE STRUCTURE Fluid mosaic model Passive and active transport | LAB – Calibrate microscopes Draw unspecialized plant and animal cells Draw dicotyledonous root | | October 23-27 | WEEK 7 | Test Week | Biochemistry | |---|----------------|---|---| | | | | &
Cells | | NOVEMBER | | | | | October 30 -
November 3 | WEEK 8 | ENZYMES Definition and structure Review properties of enzymes Mode of action – 'lock and key', induced fit Factors affecting enzyme activity – pH, temperature, substrate concentration, enzyme concentration Inhibitors – competitive and non-competitive inhibitors, allosteric inhibitors | • Water potential (potato) | | November 6-
10
November 13-
17 | WEEK 9 WEEK 10 | NUCLEIC ACIDS | LAB – • Enzymes – substrate concentration, temperature Course Work Aspects of Genetic Engineering Project | | | | 0 | | | November 20-
24 | WEEK
11 | NUCLEIC ACIDS Complete protein synthesis MITOSIS Review stages of mitosis DNA replication and genetic stability Importance of mitosis – growth, repair and asexual reproduction | LAB - Drawing of mitotic cells in onion root tip | | DECEMBER | | | | | November 27 - December 1 | WEEK
12 | MEIOSIS Definition – homologous chromosomes, haploid, diploid Stages of meiosis | LAB - Drawing of meiotic cells in onion root tip | | December 4-8 | WEEK | Importance of meiosis to
heritable behaviour Test Week | Enzymes, Nucleic Acids | |--------------------|------------|--|-------------------------| | December 10 | 13 | Test Week | and Mitosis and Meiosis | | December 11-
15 | WEEK
14 | PATTERNS OF INHERITANCE Define terms – gene, allele, dominant, recessive, codominant, homozygous and heterozygous Monohybrid cross review; genetic problems Dihybrid cross Monohybrid cross review Dihybrid cross Genetic crosses – sex linkages, codominance, multiple alleles, dominant epistasis | | ## **CHRISTMAS HOMEWORK:** • Genetic Problems not completed in class time