CHRISTMAS TERM PLAN

CHEMISTRY

GRADE 12

SEPTEMBER 4 – DECEMBER 19, 2023

Subject to Change

DATE	WEEK#	THEORY	ASSIGNMENT/		
			COURSEWORK /LABS		
	SEPTEMBER /LABS				
September 11-15	WEEK 1	MOLE CONCEPT			
		Link to objective 3, module 1, unit 1 cape chemistry syllabus • apply Avogadro's law, • define moles, molar mass • write molecular and ionic equations • mole concepts calculation, • empirical and molecular formula, (from combustion data, absolute masses or relative abundance of elements), • Titrimetric analysis (acid base and redox)			
		REDOX			
		Link to objective 4, module 1, unit 1 cape chemistry syllabus			
		 Explain redox reactions in terms of electron transfer and changes in oxidation (Construct relevant half equations for redox reactions;) Deduce balanced equations for redox reactions from relevant half equations; Perform simple displacement reactions to order elements in terms of oxidising or reducing ability. 			
September 18-22	WEEK 2	KINETIC THEORY	LAB #4 - Titration		

		 Link to objective 5, module 1, unit 1 cape chemistry syllabus Assumptions of the kinetic theory with respect to an ideal gas. Explain the differences between real and ideal gases. Perform calculations using Boyle's law, Charles' law and the ideal gas equation. Explain the liquid state, melting and vaporization ENERGETICS	
		Continued Link to objective 6, module 1, unit 1 cape chemistry syllabus	
		 Apply concepts associated with enthalpy changes Explain the effect of ionic charge and radius on the magnitude of lattice energy State Hess' law of constant heat summation (under standard conditions) Calculate enthalpy changes from appropriate experimental data 	
September 25-29	WEEK 3	ENERGETICS Continued Link to objective 6, module 1,	LAB # 3 – Dilution Titration
		 unit 1 cape chemistry syllabus Apply concepts associated with enthalpy changes Explain the effect of ionic charge and radius on the magnitude of lattice energy State Hess' law of constant heat summation (under standard conditions) Calculate enthalpy changes from appropriate experimental data. 	LAB – Fuels PD
		OCTOBER	
October 2-6	WEEK 4	RATES OF REACTIONS	LAB # 5 - Redox Titration

		Link to objective 1, module 2, unit 1 cape chemistry syllabus	Coursework –
October 9-11	WEEK 5	 Explain the concepts associated with reaction rates. Carry out experiments studying the factors which affect rate. Construct rate equations for zero, first and second order reactions. Deduce the order of reaction from experimental data. Interpret concentration vs time, concentration vs rate for zero and first order reactions. RATES OF REACTIONS Continued link to objective 1, module 2, unit 1 cape chemistry syllabus	Moles, Kinetic Theory & Energetics LAB # 6&7 - Redox Labs
		 Perform calculations from rate data Perform calculation using half-life 	
		 data. Explain the effect of temperature and catalysts on the rate of the reaction using Boltzman distribution of energies (and of 	
		collision frequency)	
		MID-TERM BREAK October 12-16	
October 17-20	WEEK 6	RATES OF REACTION CONT'D	LAB # 9 – Rate of
			Reaction
		Perform calculation using half-life	
		data.Explain the effect of temperature	
		and catalysts on the rate of the	
		reaction using Boltzman	
		distribution of energies (and of collision frequency)	
		1st STANDARDISED TEST	
		OCTOBER 23-27	
O-4-h 22 27	WEEL 7	DATES OF DEACTION CONTRO	
October 23-27	WEEK 7	RATES OF REACTION CONT'D	
		 Perform calculation using half-life data. Explain the effect of temperature and catalysts on the rate of the 	
		reaction using Boltzman	

		distribution of energies (and of	
		collision frequency).	
		NOVEMBER	
October 30 - November 3	WEEK 8	CHEMICAL EQUILIBRA	LAB # 14 - Energetics
		 Link to objective 2, module 2, unit 1 cape chemistry syllabus Dynamic Equilibrium Kc and Kp- definitions and calculations involving Le Chatelier's principle (state and apply it to explanations) Interpret how changes (concentration, pressure, temperature and presence of catalyst) affect equilibrium constant 	
November 6-10	WEEK 9	CHEMICAL EQUILIBRIA	LAB # 15 - Energetics
		 Le Chatelier's principle (state and apply it to explanations) Interpret how changes (concentration, pressure, temperature and presence of catalyst) affect equilibrium constant. 	
		ACID-BASE EQUILIBRIUM	
		Link to objective 3, module 2, unit 1 cape chemistry syllabus	
		 Explain the differences in behaviour of strong and weak acids and bases, using Bronsted-Lowry theory 	
November 13-17	WEEK 10	ACID-BASE EQULIBRIUM	COURSEWORK – to be decided
		 Define the terms Ka, pH, pKa, and pKb, Kw and pKw; Perform calculations involving pH, pOH, Ka, pKa Kw and pKw, Kb and pKb; Perform calculations involving pH, pOH, Ka, pKa Kw and pKw, Kb and pKb; 	
November 20-24	WEEK 11	ACID-BASE EQUILIBRIUM CONT'D	
		 Describe the changes in pH during acid/base titrations; Explain what is meant by the pH range of indicator; and, 	

November 27- December 1	WEEK 12	 State the basis for the selection of acid/base indicator for use in titrations. BUFFERS AND pH Link to objective 4, module 2, unit 1 cape chemistry syllabus Define the term 'buffer solution'; Explain how buffer solutions control pH Calculate the pH of buffer solutions from appropriate data; Calculate the pH of buffer solutions from appropriate data; and, Discuss the importance of buffers in biological systems and in industrial processes. 	LAB # 12 – Acid, Base, Indicators and pH		
DECEMBER					
	2 nd STANDARDISED TEST DECEMBER 4-8 WEEK 13				
December 4-8	WEEK 13	 BUFFERS AND pH CONTD Calculate the pH of buffer solutions from appropriate data; Calculate the pH of buffer solutions from appropriate data; and, Discuss the importance of buffers in biological systems and in industrial processes. 			
December 11-15	WEEK 14	SOLUBILITY PRODUCT Link to objective 5, module 2, unit 1 cape chemistry syllabus Define the term solubility product, Ksp Explain the principles underlying solubility product and the common ion effect; Perform calculations involving solubility product;	ALL lab sheets due		

 Relate the solubility product principle to the selective precipitation of substances. 	
END OF TERM DECEMBER 19, 2023	