CHRISTMAS TERM PLAN # **CHEMISTRY** ## **GRADE 12** # **SEPTEMBER 4 – DECEMBER 19, 2023** # **Subject to Change** | DATE | WEEK# | THEORY | ASSIGNMENT/ | | | |-----------------|-----------------|--|-----------------------|--|--| | | | | COURSEWORK
/LABS | | | | | SEPTEMBER /LABS | | | | | | September 11-15 | WEEK 1 | MOLE CONCEPT | | | | | | | Link to objective 3, module 1, unit 1 cape chemistry syllabus • apply Avogadro's law, • define moles, molar mass • write molecular and ionic equations • mole concepts calculation, • empirical and molecular formula, (from combustion data, absolute masses or relative abundance of elements), • Titrimetric analysis (acid base and redox) | | | | | | | REDOX | | | | | | | Link to objective 4, module 1, unit 1 cape chemistry syllabus | | | | | | | Explain redox reactions in terms of electron transfer and changes in oxidation (Construct relevant half equations for redox reactions;) Deduce balanced equations for redox reactions from relevant half equations; Perform simple displacement reactions to order elements in terms of oxidising or reducing ability. | | | | | September 18-22 | WEEK 2 | KINETIC THEORY | LAB #4 -
Titration | | | | | | Link to objective 5, module 1, unit 1 cape chemistry syllabus Assumptions of the kinetic theory with respect to an ideal gas. Explain the differences between real and ideal gases. Perform calculations using Boyle's law, Charles' law and the ideal gas equation. Explain the liquid state, melting and vaporization ENERGETICS | | |-----------------|--------|--|---------------------------------| | | | Continued Link to objective 6, module 1, unit 1 cape chemistry syllabus | | | | | Apply concepts associated with enthalpy changes Explain the effect of ionic charge and radius on the magnitude of lattice energy State Hess' law of constant heat summation (under standard conditions) Calculate enthalpy changes from appropriate experimental data | | | September 25-29 | WEEK 3 | ENERGETICS Continued Link to objective 6, module 1, | LAB # 3 –
Dilution Titration | | | | unit 1 cape chemistry syllabus Apply concepts associated with enthalpy changes Explain the effect of ionic charge and radius on the magnitude of lattice energy State Hess' law of constant heat summation (under standard conditions) Calculate enthalpy changes from appropriate experimental data. | LAB – Fuels PD | | | | OCTOBER | | | October 2-6 | WEEK 4 | RATES OF REACTIONS | LAB # 5 - Redox
Titration | | | | Link to objective 1, module 2, unit 1 cape chemistry syllabus | Coursework – | |---------------|--------|---|--| | October 9-11 | WEEK 5 | Explain the concepts associated with reaction rates. Carry out experiments studying the factors which affect rate. Construct rate equations for zero, first and second order reactions. Deduce the order of reaction from experimental data. Interpret concentration vs time, concentration vs rate for zero and first order reactions. RATES OF REACTIONS Continued link to objective 1, module 2, unit 1 cape chemistry syllabus | Moles, Kinetic Theory & Energetics LAB # 6&7 - Redox Labs | | | | Perform calculations from rate data Perform calculation using half-life | | | | | data. Explain the effect of temperature and catalysts on the rate of the reaction using Boltzman distribution of energies (and of | | | | | collision frequency) | | | | | MID-TERM BREAK October 12-16 | | | October 17-20 | WEEK 6 | RATES OF REACTION CONT'D | LAB # 9 – Rate of | | | | | Reaction | | | | Perform calculation using half-life | | | | | data.Explain the effect of temperature | | | | | and catalysts on the rate of the | | | | | reaction using Boltzman | | | | | distribution of energies (and of collision frequency) | | | | | 1st STANDARDISED TEST | | | | | OCTOBER 23-27 | | | O-4-h 22 27 | WEEL 7 | DATES OF DEACTION CONTRO | | | October 23-27 | WEEK 7 | RATES OF REACTION CONT'D | | | | | Perform calculation using half-life data. Explain the effect of temperature and catalysts on the rate of the | | | | | reaction using Boltzman | | | | | distribution of energies (and of | | |----------------------------|---------|---|-----------------------------| | | | collision frequency). | | | | | NOVEMBER | | | October 30 -
November 3 | WEEK 8 | CHEMICAL EQUILIBRA | LAB # 14 -
Energetics | | | | Link to objective 2, module 2, unit 1 cape chemistry syllabus Dynamic Equilibrium Kc and Kp- definitions and calculations involving Le Chatelier's principle (state and apply it to explanations) Interpret how changes (concentration, pressure, temperature and presence of catalyst) affect equilibrium constant | | | November 6-10 | WEEK 9 | CHEMICAL EQUILIBRIA | LAB # 15 -
Energetics | | | | Le Chatelier's principle (state and apply it to explanations) Interpret how changes (concentration, pressure, temperature and presence of catalyst) affect equilibrium constant. | | | | | ACID-BASE EQUILIBRIUM | | | | | Link to objective 3, module 2, unit 1 cape chemistry syllabus | | | | | Explain the differences in behaviour
of strong and weak acids and bases,
using Bronsted-Lowry theory | | | November 13-17 | WEEK 10 | ACID-BASE EQULIBRIUM | COURSEWORK – to be decided | | | | Define the terms Ka, pH, pKa, and pKb, Kw and pKw; Perform calculations involving pH, pOH, Ka, pKa Kw and pKw, Kb and pKb; Perform calculations involving pH, pOH, Ka, pKa Kw and pKw, Kb and pKb; | | | November 20-24 | WEEK 11 | ACID-BASE EQUILIBRIUM CONT'D | | | | | Describe the changes in pH during acid/base titrations; Explain what is meant by the pH range of indicator; and, | | | November 27-
December 1 | WEEK 12 | State the basis for the selection of acid/base indicator for use in titrations. BUFFERS AND pH Link to objective 4, module 2, unit 1 cape chemistry syllabus Define the term 'buffer solution'; Explain how buffer solutions control pH Calculate the pH of buffer solutions from appropriate data; Calculate the pH of buffer solutions from appropriate data; and, Discuss the importance of buffers in biological systems and in industrial processes. | LAB # 12 – Acid,
Base, Indicators
and pH | | | |----------------------------|--|--|--|--|--| | DECEMBER | | | | | | | | 2 nd STANDARDISED TEST
DECEMBER 4-8
WEEK 13 | | | | | | December 4-8 | WEEK 13 | BUFFERS AND pH CONTD Calculate the pH of buffer solutions from appropriate data; Calculate the pH of buffer solutions from appropriate data; and, Discuss the importance of buffers in biological systems and in industrial processes. | | | | | December 11-15 | WEEK 14 | SOLUBILITY PRODUCT Link to objective 5, module 2, unit 1 cape chemistry syllabus Define the term solubility product, Ksp Explain the principles underlying solubility product and the common ion effect; Perform calculations involving solubility product; | ALL lab sheets due | | | | Relate the solubility product
principle to the selective
precipitation of substances. | | |---|--| | END OF TERM
DECEMBER 19, 2023 | |