IMMACULATE CONCEPTION HIGH

EASTER TERM PLAN'

GRADE 12

CHEMISTRY

2021-2022

JANUARY 8 – MARCH 27

DATE	WEEKS	THEORY	LABS/COURSEWORKS/ ASSIGNMENTS
		JANUARY	
January 8-12	WEEK 1	 ACID-BASE EQUILIBRIUM CONT'D Describe the changes in pH during acid/base titrations; Explain what is meant by the pH range of indicator; and, State the basis for the selection of acid/base indicator for use in titrations. 	
		Use experimental information to bolster grasp of concept	
January 15-19	WEEK 2	 BUFFERS and pH Define the term 'buffer solution'; Explain how buffer solutions control pH Calculate the pH of buffer solutions from appropriate data; Calculate the pH of buffer solutions from appropriate data; and, Discuss the importance of buffers in biological systems and in industrial processes. 	
		 SOLUBILITY PRODUCT Define the term solubility product, Ksp 	

		 Explain the principles underlying solubility product and the common ion effect; Perform calculations involving solubility product; Relate the solubility product principle to the selective precipitation of substances. Use experimental information to bolster grasp of concept 	
January 22-26	WEEK 3	 REDOX EQUILIBRIA define the terms standard electrode potential and standard cell potential describe the standard hydrogen electrode describe methods used to measure the standard electrode potentials calculate standard cell potentials from standard electrode potentials of two half cells use standard electrode potentials of cells to determine the direction of electron flow; and, 	Lab – Acid Bases, Indicators and pH IP Final PD draft due
January 28 – February 2	WEEK 4	REDOX EQUILIBRIA CONT'D • to determine the feasibility of a reaction • predict how the value of an electrode potential varies with concentration; and, apply the principles of redox processes to energy storage devices ATOMIC STRUCTURE • Dalton's theory - (pay special attention to postulates) • Describe the structure of the atom (relative masses, charges, etc.)	Lab - Solubility Product

		 Definition of terms - mass number, isotopes, relative atomic and isotopic masses. Explain the phenomenon of radioactivity. Write equations representing nuclear reactions involving alpha, beta and gamma emissions. (mention positrons even though not required) Cite the uses and disposal of radioisotopes. Calculations on the relative atomic mass of an element Atomic emission spectra (E=hμ) Describe atomic orbital Describe s, p, d, f orbitals 	
February 5-9	WEEK 5	ATOMIC STRUCTURE CONT'D	
		 Determine electronic configuration of atoms and ions in terms of s,p and d orbitals factors that influence first ionization energy Ionization energy and evidence of sub shells electronic configuration derived from ionization energies data 	
February 12-14 WEEK 6 MID TERM BREAK			
Students will perform IP experiments on Monday, February 12, 2024			
February 15-16 WEEK 6 STANDARDISED TEST			
February 19-23	WEEK 7	FORCES OF ATTRACTION	

		 State the various forces of attraction, Relationship between forces of attraction and states of matter; relate physical properties of matter to differences in strength of forces of attraction; explain the formation of the following: (a) ionic bonds; (b) covalent bonds; and, (c) metallic bonds. (Electronegativity and polarity of bonds should be included - use Phet simulation) describe co-ordinate bonding 	
February 26 – March 1	Week 8	 Describe the origin of intermolecular forces; Refer to hydrogen bonding; Van der Waals forces, permanent dipole. Predict the shapes of, and bond angles in simple molecules and ions; Explain the shapes and bond angles of simple organic compounds; predict the shapes and bond angles of molecules similar to Explain the shapes and bond angles of simple organic compounds; predict the shapes and bond angles of simple organic compounds; predict the shapes and bond angles of molecules similar to ethane; and, describe qualitatively the lattice structure crystalline solids and their relation to physical properties. 	Lab – Forces of Attraction

		MARCH	
M 1 4 0	MARCH		
March 4-8	Week 9	TRANSITIONAL METALS	
		Objectives 1-10 (see cape syllabus	
		page 32-33) Transitional metal	
March 11-22	WEEK	MOCK EXAMS – everything up	
	10-11	to Forces of Attraction	
March 25-27	Week 12	TRANSITIONAL METALS	
		CONT'D	
		IDENTIFICATION OF	
		CATIONS/ANIONS - 4 sessions	
		• Identify cations: K+, Na ⁺ , Ca ²⁺	
		Ba ²⁺ Cu ²⁺ by their flame tests	
		• identify cations Mg ²⁺ (aq),	
		$Al^{3+}(aq), Ca^{2+}(aq), Cr^{3+}(aq), Mn^{2+}$	
		$(aq), Fe^{2+}(aq), Fe^{3+}(aq),$	
		$Cu^{2+}(aq), Zn^{2+}(aq), Ba^{2+}(aq),$	
		$Pb^{2+}(aq), NH_4^+(aq);$	
		explain the principles upon	
		which the reactions of the	
		compounds above are based and	
		write the corresponding ionic	
		equations	
		• identify anions: CO3 ² -, NO3 ⁻ ,	
		SO4 ² -, SO3 ² (aq), Cl-, Br-, l-,	
		CrO4 and write ionic equations to correspond to reactions.	
		to correspond to reactions.	
	<u> </u>	March 27	
		Last days of school term	
	"M	op up" outstanding topic, assignment, or labs	