IMMACULATE CONCEPTION HIGH SCHOOL			
PHYSICS SYLLABUS SEQUENCE 2024/2025			
GRADE:	11		
TERM:	1		
WEEK:	DATE	TOPICS	OBJECTIVES
1	Sept.	Revision	Review the grade 10 End of Year Exam Paper
	2-0		Meet with IP students
2	Sept. 9 – 13	Thermal Physics	 Conduct an experiment to determine <i>c</i> for metals and liquids using: Methods of Mixtures Discuss Experiment: Determine the specific latent heat of vaporization <i>Iv</i>, and fusion, <i>If</i> of water
			Review Thermal Physics group assignments.
3	Sept. 16 – 20	Thermal Physics	 <u>Gas Laws</u> 1. Use the relationship between Kelvin and Celsius scale. T/K = θ/°C + 273; 2. Relate pressure/volume against temperature graphs to the establishment of the Kelvin temperature scale 3. Explain gas pressure in terms of molecular motion 4. Apply the gas laws: Boyle's Law; Charles' Law; Pressure Law; General Gas Law;
4	Sept. 23 - 27	Physics of the atom	 Course Work # 1 - Thermal Physics Models of the Atom describe the work done in establishing the modern view of the atom; describe the Geiger-Marsden experiment which established the nuclear structure of the atom. Particles in the Atom sketch the structure of simple atoms;

			 compare the mass and charge of the electron with the mass and charge of the proton; explain why an atom is normally neutral and stable; recall and use the relationship A = Z + N; explain what is meant by the term "isotope"; relate the shell model of the atom to the periodic table.
5	Sept. 30 - Oct. 4	Radioactivity	 discuss the useful applications of radioisotopes; <u>Radioactive Emissions</u> describe Marie Curie's work in the field of radioactivity; state the nature of the three types of emissions from radioactive substances; describe experiments to compare the ranges of <i>α</i>, <i>β</i> and <i>γ</i> emission interpret nuclear reactions in the standard form; describe the appearance of the tracks of radioactive emissions in a cloud chamber; predict the effects of magnetic and electric fields on the motion of <i>α</i>, <i>β</i> particles and <i>γ</i> rays;
6	Oct. 7 - 11		Same as Week 5
7	Oct. 14 - 18		LAB: Half-Life (Coins) MID-TERM Oct. 18 - 20
8	Oct. 21 - 25		FIRST SIX WEEKS TEST
9	Oct. 28 - Nov. 1	Radioactivity	 <u>Half-life</u> use graphs of random decay to show that such processes have constant half-lives; solve simple problems involving half-life; recall that the decay process is independent of the conditions external to the nucleus;

			Nuclear Energy
			 relate the release of energy in a nuclear
			reaction to a change in mass:
			 cite arguments for and against the utilization of
			Application of Finatoin's equation:
			• Application of Einstein's equation: $\mathbf{E} = \mathbf{m}\mathbf{c}^2$.
10	NOV.		Permanent Magnets
	4 - 8		• 6.1 differentiate between magnetic and
			• 0.1 unreferitiate between magnetic and
			non-magnetic materials;
			• 6.2 explain how a magnet can attract an
			object;
		Magnetism	 6.3 distinguish between materials used to
			make "permanent" and "temporary"
			magnets;
			• 6.4 identify the poles of a magnetic dipole;
			Magnetic Forces
			6.5 investigate the forces between magnetic
			poles;
			 6.6 define a magnetic field;
			• 6.7 map magnetic fields.
			NOTE: Magnetism was taught in Grade 9 so treat it
			as a revision topic.
		Electrostatics	Electric Charge, Q
			explain the charging of objects;
			 describe the forces that electric charges
			exert on each other;
			 explain charging by induction;
			 describe one hazard and one useful
	Nov.		application of static charge
11			
	11 - 15	Current Floctricity	Electric Field
			define an electric field;
			Draw the electric fields around and
			between point charges, and between
			charged parallel plates:
			 distinguish between conductors and
			insulators:
			 state that an electric current in a metal
			consists of a flow of electrons:

	 differentiate between electron flow and conventional current; state the unit of electrical current; apply the relationship Q = I t
Circuits and Components	 Power, P and Energy, E cite examples of the conversion of electrical energy to other forms and vice versa; apply the relationship V = E/Q; apply the relationship P =IV; discuss the importance of conserving electrical energy and the means of doing so.
	 <u>Circuit Diagrams</u> use symbols to construct circuit diagrams; differentiate between series and parallel circuits

12	Nov. 18 - 22	Circuits and Components	 <u>Cells</u> explain the functions of the various parts of a zinc-carbon cell; distinguish between primary and secondary cells; draw a circuit diagram to show how a secondary cell can be recharged;
		Current Electricity	 Resistance, R explain the concept of resistance; State Ohm's Law apply the relationship R= V/I explain why it is necessary for an ammeter to have a very low resistance; explain why it is necessary for a voltmeter to have a very high resistance; solve problems involving series and parallel resistance;
			 <u>I - V Relationships</u> solve problems involving series, parallel and series-parallel circuits; investigate the relationship between current and potential difference;
13	Nov. 25 – 29	Electronics	 <u>Alternating Current</u> differentiate between direct and alternating currents; analyze current-time or voltage-time graphs. deduce the period and frequency of ac. or voltages
			 Rectification describe how a semi-conductor dioxide can be used in half wave rectification; differentiate between direct current from batteries and rectified alternating current by a consideration of the V – t graphs for both cases;

14	Dec. 2 - 6		SECOND SIX WEEKS TEST
15	Dec. 9 - 13	Electromagnetism	 LAB: Series and Parallel Circuits Electricity in the Home discuss the reasons for using parallel connections of domestic appliances; explain the purpose of a fuse or circuit breaker and the earth wire; select a fuse or circuit breaker of suitable current rating for a given appliance; state the adverse effects of connecting electrical appliances to incorrect or fluctuating voltage supplies. Logic Gates recall the symbols for AND, OR, NOT, NAND, N logic gates; state the function of each gate with the aid of truth tables; analyze circuits involving the combinations of not more than three logic gates; discuss the impact of electronic and technological advances on society.
16	Dec. 16 - 17		REVISION END OF TERM – Dec. 19